Robust Group Synchronization via Cycle-Edge Message Passing
Published in Foundations of Computational Mathematics, 2021
Recommended citation: Gilad Lerman, Yunpeng Shi. Foundations of Computational Mathematics, 2021.
Abstract
We propose a general framework for solving the group synchronization problem, where we focus on the setting of adversarial or uniform corruption and sufficiently small noise. Specifically, we apply a novel message passing procedure that uses cycle consistency information in order to estimate the corruption levels of group ratios and consequently solve the synchronization problem in our setting. We first explain why the group cycle consistency information is essential for effectively solving group synchronization problems. We then establish exact recovery and linear convergence guarantees for the proposed message passing procedure under a deterministic setting with adversarial corruption. These guarantees hold as long as the ratio of corrupted cycles per edge is bounded by a reasonable constant. We also establish the stability of the proposed procedure to sub-Gaussian noise. We further establish exact recovery with high probability under a common uniform corruption model.